autoscaling.v2.metricSpec
"MetricSpec specifies how to scale based on a single metric (only type
and one other matching field should be set at once)."
Index
fn withType(type)
obj containerResource
obj external
obj object
obj pods
obj resource
Fields
fn withType
withType(type)
"type is the type of metric source. It should be one of \"ContainerResource\", \"External\", \"Object\", \"Pods\" or \"Resource\", each mapping to a matching field in the object. Note: \"ContainerResource\" type is available on when the feature-gate HPAContainerMetrics is enabled"
obj containerResource
"ContainerResourceMetricSource indicates how to scale on a resource metric known to Kubernetes, as specified in requests and limits, describing each pod in the current scale target (e.g. CPU or memory). The values will be averaged together before being compared to the target. Such metrics are built in to Kubernetes, and have special scaling options on top of those available to normal per-pod metrics using the \"pods\" source. Only one \"target\" type should be set."
fn containerResource.withContainer
withContainer(container)
"container is the name of the container in the pods of the scaling target"
fn containerResource.withName
withName(name)
"name is the name of the resource in question."
obj containerResource.target
"MetricTarget defines the target value, average value, or average utilization of a specific metric"
fn containerResource.target.withAverageUtilization
withAverageUtilization(averageUtilization)
"averageUtilization is the target value of the average of the resource metric across all relevant pods, represented as a percentage of the requested value of the resource for the pods. Currently only valid for Resource metric source type"
fn containerResource.target.withAverageValue
withAverageValue(averageValue)
"Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors.\n\nThe serialization format is:\n\n<quantity> ::= <signedNumber><suffix>\n\n\t(Note that <suffix> may be empty, from the \"\" case in <decimalSI>.)\n\n<digit> ::= 0 | 1 | ... | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= \"+\" | \"-\" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei\n\n\t(International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n\n<decimalSI> ::= m | \"\" | k | M | G | T | P | E\n\n\t(Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n\n<decimalExponent> ::= \"e\" <signedNumber> | \"E\" <signedNumber>
\n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n\n- No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible.\n\nThe sign will be omitted unless the number is negative.\n\nExamples:\n\n- 1.5 will be serialized as \"1500m\" - 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation."
fn containerResource.target.withType
withType(type)
"type represents whether the metric type is Utilization, Value, or AverageValue"
fn containerResource.target.withValue
withValue(value)
"Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors.\n\nThe serialization format is:\n\n<quantity> ::= <signedNumber><suffix>\n\n\t(Note that <suffix> may be empty, from the \"\" case in <decimalSI>.)\n\n<digit> ::= 0 | 1 | ... | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= \"+\" | \"-\" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei\n\n\t(International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n\n<decimalSI> ::= m | \"\" | k | M | G | T | P | E\n\n\t(Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n\n<decimalExponent> ::= \"e\" <signedNumber> | \"E\" <signedNumber>
\n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n\n- No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible.\n\nThe sign will be omitted unless the number is negative.\n\nExamples:\n\n- 1.5 will be serialized as \"1500m\" - 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation."
obj external
"ExternalMetricSource indicates how to scale on a metric not associated with any Kubernetes object (for example length of queue in cloud messaging service, or QPS from loadbalancer running outside of cluster)."
obj external.metric
"MetricIdentifier defines the name and optionally selector for a metric"
fn external.metric.withName
withName(name)
"name is the name of the given metric"
obj external.metric.selector
"A label selector is a label query over a set of resources. The result of matchLabels and matchExpressions are ANDed. An empty label selector matches all objects. A null label selector matches no objects."
fn external.metric.selector.withMatchExpressions
withMatchExpressions(matchExpressions)
"matchExpressions is a list of label selector requirements. The requirements are ANDed."
fn external.metric.selector.withMatchExpressionsMixin
withMatchExpressionsMixin(matchExpressions)
"matchExpressions is a list of label selector requirements. The requirements are ANDed."
Note: This function appends passed data to existing values
fn external.metric.selector.withMatchLabels
withMatchLabels(matchLabels)
"matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is \"key\", the operator is \"In\", and the values array contains only \"value\". The requirements are ANDed."
fn external.metric.selector.withMatchLabelsMixin
withMatchLabelsMixin(matchLabels)
"matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is \"key\", the operator is \"In\", and the values array contains only \"value\". The requirements are ANDed."
Note: This function appends passed data to existing values
obj external.target
"MetricTarget defines the target value, average value, or average utilization of a specific metric"
fn external.target.withAverageUtilization
withAverageUtilization(averageUtilization)
"averageUtilization is the target value of the average of the resource metric across all relevant pods, represented as a percentage of the requested value of the resource for the pods. Currently only valid for Resource metric source type"
fn external.target.withAverageValue
withAverageValue(averageValue)
"Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors.\n\nThe serialization format is:\n\n<quantity> ::= <signedNumber><suffix>\n\n\t(Note that <suffix> may be empty, from the \"\" case in <decimalSI>.)\n\n<digit> ::= 0 | 1 | ... | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= \"+\" | \"-\" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei\n\n\t(International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n\n<decimalSI> ::= m | \"\" | k | M | G | T | P | E\n\n\t(Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n\n<decimalExponent> ::= \"e\" <signedNumber> | \"E\" <signedNumber>
\n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n\n- No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible.\n\nThe sign will be omitted unless the number is negative.\n\nExamples:\n\n- 1.5 will be serialized as \"1500m\" - 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation."
fn external.target.withType
withType(type)
"type represents whether the metric type is Utilization, Value, or AverageValue"
fn external.target.withValue
withValue(value)
"Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors.\n\nThe serialization format is:\n\n<quantity> ::= <signedNumber><suffix>\n\n\t(Note that <suffix> may be empty, from the \"\" case in <decimalSI>.)\n\n<digit> ::= 0 | 1 | ... | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= \"+\" | \"-\" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei\n\n\t(International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n\n<decimalSI> ::= m | \"\" | k | M | G | T | P | E\n\n\t(Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n\n<decimalExponent> ::= \"e\" <signedNumber> | \"E\" <signedNumber>
\n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n\n- No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible.\n\nThe sign will be omitted unless the number is negative.\n\nExamples:\n\n- 1.5 will be serialized as \"1500m\" - 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation."
obj object
"ObjectMetricSource indicates how to scale on a metric describing a kubernetes object (for example, hits-per-second on an Ingress object)."
obj object.describedObject
"CrossVersionObjectReference contains enough information to let you identify the referred resource."
fn object.describedObject.withApiVersion
withApiVersion(apiVersion)
"apiVersion is the API version of the referent"
fn object.describedObject.withKind
withKind(kind)
"kind is the kind of the referent; More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds"
fn object.describedObject.withName
withName(name)
"name is the name of the referent; More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names"
obj object.metric
"MetricIdentifier defines the name and optionally selector for a metric"
fn object.metric.withName
withName(name)
"name is the name of the given metric"
obj object.metric.selector
"A label selector is a label query over a set of resources. The result of matchLabels and matchExpressions are ANDed. An empty label selector matches all objects. A null label selector matches no objects."
fn object.metric.selector.withMatchExpressions
withMatchExpressions(matchExpressions)
"matchExpressions is a list of label selector requirements. The requirements are ANDed."
fn object.metric.selector.withMatchExpressionsMixin
withMatchExpressionsMixin(matchExpressions)
"matchExpressions is a list of label selector requirements. The requirements are ANDed."
Note: This function appends passed data to existing values
fn object.metric.selector.withMatchLabels
withMatchLabels(matchLabels)
"matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is \"key\", the operator is \"In\", and the values array contains only \"value\". The requirements are ANDed."
fn object.metric.selector.withMatchLabelsMixin
withMatchLabelsMixin(matchLabels)
"matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is \"key\", the operator is \"In\", and the values array contains only \"value\". The requirements are ANDed."
Note: This function appends passed data to existing values
obj object.target
"MetricTarget defines the target value, average value, or average utilization of a specific metric"
fn object.target.withAverageUtilization
withAverageUtilization(averageUtilization)
"averageUtilization is the target value of the average of the resource metric across all relevant pods, represented as a percentage of the requested value of the resource for the pods. Currently only valid for Resource metric source type"
fn object.target.withAverageValue
withAverageValue(averageValue)
"Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors.\n\nThe serialization format is:\n\n<quantity> ::= <signedNumber><suffix>\n\n\t(Note that <suffix> may be empty, from the \"\" case in <decimalSI>.)\n\n<digit> ::= 0 | 1 | ... | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= \"+\" | \"-\" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei\n\n\t(International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n\n<decimalSI> ::= m | \"\" | k | M | G | T | P | E\n\n\t(Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n\n<decimalExponent> ::= \"e\" <signedNumber> | \"E\" <signedNumber>
\n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n\n- No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible.\n\nThe sign will be omitted unless the number is negative.\n\nExamples:\n\n- 1.5 will be serialized as \"1500m\" - 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation."
fn object.target.withType
withType(type)
"type represents whether the metric type is Utilization, Value, or AverageValue"
fn object.target.withValue
withValue(value)
"Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors.\n\nThe serialization format is:\n\n<quantity> ::= <signedNumber><suffix>\n\n\t(Note that <suffix> may be empty, from the \"\" case in <decimalSI>.)\n\n<digit> ::= 0 | 1 | ... | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= \"+\" | \"-\" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei\n\n\t(International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n\n<decimalSI> ::= m | \"\" | k | M | G | T | P | E\n\n\t(Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n\n<decimalExponent> ::= \"e\" <signedNumber> | \"E\" <signedNumber>
\n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n\n- No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible.\n\nThe sign will be omitted unless the number is negative.\n\nExamples:\n\n- 1.5 will be serialized as \"1500m\" - 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation."
obj pods
"PodsMetricSource indicates how to scale on a metric describing each pod in the current scale target (for example, transactions-processed-per-second). The values will be averaged together before being compared to the target value."
obj pods.metric
"MetricIdentifier defines the name and optionally selector for a metric"
fn pods.metric.withName
withName(name)
"name is the name of the given metric"
obj pods.metric.selector
"A label selector is a label query over a set of resources. The result of matchLabels and matchExpressions are ANDed. An empty label selector matches all objects. A null label selector matches no objects."
fn pods.metric.selector.withMatchExpressions
withMatchExpressions(matchExpressions)
"matchExpressions is a list of label selector requirements. The requirements are ANDed."
fn pods.metric.selector.withMatchExpressionsMixin
withMatchExpressionsMixin(matchExpressions)
"matchExpressions is a list of label selector requirements. The requirements are ANDed."
Note: This function appends passed data to existing values
fn pods.metric.selector.withMatchLabels
withMatchLabels(matchLabels)
"matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is \"key\", the operator is \"In\", and the values array contains only \"value\". The requirements are ANDed."
fn pods.metric.selector.withMatchLabelsMixin
withMatchLabelsMixin(matchLabels)
"matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is \"key\", the operator is \"In\", and the values array contains only \"value\". The requirements are ANDed."
Note: This function appends passed data to existing values
obj pods.target
"MetricTarget defines the target value, average value, or average utilization of a specific metric"
fn pods.target.withAverageUtilization
withAverageUtilization(averageUtilization)
"averageUtilization is the target value of the average of the resource metric across all relevant pods, represented as a percentage of the requested value of the resource for the pods. Currently only valid for Resource metric source type"
fn pods.target.withAverageValue
withAverageValue(averageValue)
"Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors.\n\nThe serialization format is:\n\n<quantity> ::= <signedNumber><suffix>\n\n\t(Note that <suffix> may be empty, from the \"\" case in <decimalSI>.)\n\n<digit> ::= 0 | 1 | ... | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= \"+\" | \"-\" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei\n\n\t(International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n\n<decimalSI> ::= m | \"\" | k | M | G | T | P | E\n\n\t(Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n\n<decimalExponent> ::= \"e\" <signedNumber> | \"E\" <signedNumber>
\n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n\n- No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible.\n\nThe sign will be omitted unless the number is negative.\n\nExamples:\n\n- 1.5 will be serialized as \"1500m\" - 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation."
fn pods.target.withType
withType(type)
"type represents whether the metric type is Utilization, Value, or AverageValue"
fn pods.target.withValue
withValue(value)
"Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors.\n\nThe serialization format is:\n\n<quantity> ::= <signedNumber><suffix>\n\n\t(Note that <suffix> may be empty, from the \"\" case in <decimalSI>.)\n\n<digit> ::= 0 | 1 | ... | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= \"+\" | \"-\" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei\n\n\t(International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n\n<decimalSI> ::= m | \"\" | k | M | G | T | P | E\n\n\t(Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n\n<decimalExponent> ::= \"e\" <signedNumber> | \"E\" <signedNumber>
\n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n\n- No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible.\n\nThe sign will be omitted unless the number is negative.\n\nExamples:\n\n- 1.5 will be serialized as \"1500m\" - 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation."
obj resource
"ResourceMetricSource indicates how to scale on a resource metric known to Kubernetes, as specified in requests and limits, describing each pod in the current scale target (e.g. CPU or memory). The values will be averaged together before being compared to the target. Such metrics are built in to Kubernetes, and have special scaling options on top of those available to normal per-pod metrics using the \"pods\" source. Only one \"target\" type should be set."
fn resource.withName
withName(name)
"name is the name of the resource in question."
obj resource.target
"MetricTarget defines the target value, average value, or average utilization of a specific metric"
fn resource.target.withAverageUtilization
withAverageUtilization(averageUtilization)
"averageUtilization is the target value of the average of the resource metric across all relevant pods, represented as a percentage of the requested value of the resource for the pods. Currently only valid for Resource metric source type"
fn resource.target.withAverageValue
withAverageValue(averageValue)
"Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors.\n\nThe serialization format is:\n\n<quantity> ::= <signedNumber><suffix>\n\n\t(Note that <suffix> may be empty, from the \"\" case in <decimalSI>.)\n\n<digit> ::= 0 | 1 | ... | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= \"+\" | \"-\" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei\n\n\t(International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n\n<decimalSI> ::= m | \"\" | k | M | G | T | P | E\n\n\t(Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n\n<decimalExponent> ::= \"e\" <signedNumber> | \"E\" <signedNumber>
\n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n\n- No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible.\n\nThe sign will be omitted unless the number is negative.\n\nExamples:\n\n- 1.5 will be serialized as \"1500m\" - 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation."
fn resource.target.withType
withType(type)
"type represents whether the metric type is Utilization, Value, or AverageValue"
fn resource.target.withValue
withValue(value)
"Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors.\n\nThe serialization format is:\n\n<quantity> ::= <signedNumber><suffix>\n\n\t(Note that <suffix> may be empty, from the \"\" case in <decimalSI>.)\n\n<digit> ::= 0 | 1 | ... | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= \"+\" | \"-\" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei\n\n\t(International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n\n<decimalSI> ::= m | \"\" | k | M | G | T | P | E\n\n\t(Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n\n<decimalExponent> ::= \"e\" <signedNumber> | \"E\" <signedNumber>
\n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n\n- No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible.\n\nThe sign will be omitted unless the number is negative.\n\nExamples:\n\n- 1.5 will be serialized as \"1500m\" - 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation."