Skip to content

autoscaling.v2.horizontalPodAutoscaler

"HorizontalPodAutoscaler is the configuration for a horizontal pod autoscaler, which automatically manages the replica count of any resource implementing the scale subresource based on the metrics specified."

Index

Fields

fn new

new(name)

new returns an instance of HorizontalPodAutoscaler

obj metadata

"ObjectMeta is metadata that all persisted resources must have, which includes all objects users must create."

fn metadata.withAnnotations

withAnnotations(annotations)

"Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: http://kubernetes.io/docs/user-guide/annotations"

fn metadata.withAnnotationsMixin

withAnnotationsMixin(annotations)

"Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: http://kubernetes.io/docs/user-guide/annotations"

Note: This function appends passed data to existing values

fn metadata.withCreationTimestamp

withCreationTimestamp(creationTimestamp)

"Time is a wrapper around time.Time which supports correct marshaling to YAML and JSON. Wrappers are provided for many of the factory methods that the time package offers."

fn metadata.withDeletionGracePeriodSeconds

withDeletionGracePeriodSeconds(deletionGracePeriodSeconds)

"Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only."

fn metadata.withDeletionTimestamp

withDeletionTimestamp(deletionTimestamp)

"Time is a wrapper around time.Time which supports correct marshaling to YAML and JSON. Wrappers are provided for many of the factory methods that the time package offers."

fn metadata.withFinalizers

withFinalizers(finalizers)

"Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list."

fn metadata.withFinalizersMixin

withFinalizersMixin(finalizers)

"Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list."

Note: This function appends passed data to existing values

fn metadata.withGenerateName

withGenerateName(generateName)

"GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.\n\nIf this field is specified and the generated name exists, the server will return a 409.\n\nApplied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency"

fn metadata.withGeneration

withGeneration(generation)

"A sequence number representing a specific generation of the desired state. Populated by the system. Read-only."

fn metadata.withLabels

withLabels(labels)

"Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: http://kubernetes.io/docs/user-guide/labels"

fn metadata.withLabelsMixin

withLabelsMixin(labels)

"Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: http://kubernetes.io/docs/user-guide/labels"

Note: This function appends passed data to existing values

fn metadata.withManagedFields

withManagedFields(managedFields)

"ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like \"ci-cd\". The set of fields is always in the version that the workflow used when modifying the object."

fn metadata.withManagedFieldsMixin

withManagedFieldsMixin(managedFields)

"ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like \"ci-cd\". The set of fields is always in the version that the workflow used when modifying the object."

Note: This function appends passed data to existing values

fn metadata.withName

withName(name)

"Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: http://kubernetes.io/docs/user-guide/identifiers#names"

fn metadata.withNamespace

withNamespace(namespace)

"Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the \"default\" namespace, but \"default\" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.\n\nMust be a DNS_LABEL. Cannot be updated. More info: http://kubernetes.io/docs/user-guide/namespaces"

fn metadata.withOwnerReferences

withOwnerReferences(ownerReferences)

"List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller."

fn metadata.withOwnerReferencesMixin

withOwnerReferencesMixin(ownerReferences)

"List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller."

Note: This function appends passed data to existing values

fn metadata.withResourceVersion

withResourceVersion(resourceVersion)

"An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.\n\nPopulated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency"

withSelfLink(selfLink)

"Deprecated: selfLink is a legacy read-only field that is no longer populated by the system."

fn metadata.withUid

withUid(uid)

"UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.\n\nPopulated by the system. Read-only. More info: http://kubernetes.io/docs/user-guide/identifiers#uids"

obj spec

"HorizontalPodAutoscalerSpec describes the desired functionality of the HorizontalPodAutoscaler."

fn spec.withMaxReplicas

withMaxReplicas(maxReplicas)

"maxReplicas is the upper limit for the number of replicas to which the autoscaler can scale up. It cannot be less that minReplicas."

fn spec.withMetrics

withMetrics(metrics)

"metrics contains the specifications for which to use to calculate the desired replica count (the maximum replica count across all metrics will be used). The desired replica count is calculated multiplying the ratio between the target value and the current value by the current number of pods. Ergo, metrics used must decrease as the pod count is increased, and vice-versa. See the individual metric source types for more information about how each type of metric must respond. If not set, the default metric will be set to 80% average CPU utilization."

fn spec.withMetricsMixin

withMetricsMixin(metrics)

"metrics contains the specifications for which to use to calculate the desired replica count (the maximum replica count across all metrics will be used). The desired replica count is calculated multiplying the ratio between the target value and the current value by the current number of pods. Ergo, metrics used must decrease as the pod count is increased, and vice-versa. See the individual metric source types for more information about how each type of metric must respond. If not set, the default metric will be set to 80% average CPU utilization."

Note: This function appends passed data to existing values

fn spec.withMinReplicas

withMinReplicas(minReplicas)

"minReplicas is the lower limit for the number of replicas to which the autoscaler can scale down. It defaults to 1 pod. minReplicas is allowed to be 0 if the alpha feature gate HPAScaleToZero is enabled and at least one Object or External metric is configured. Scaling is active as long as at least one metric value is available."

fn spec.withScaleTargetRef

withScaleTargetRef(object)

Set spec.ScaleTargetRef to object

obj spec.behavior

"HorizontalPodAutoscalerBehavior configures the scaling behavior of the target in both Up and Down directions (scaleUp and scaleDown fields respectively)."

obj spec.behavior.scaleDown

"HPAScalingRules configures the scaling behavior for one direction. These Rules are applied after calculating DesiredReplicas from metrics for the HPA. They can limit the scaling velocity by specifying scaling policies. They can prevent flapping by specifying the stabilization window, so that the number of replicas is not set instantly, instead, the safest value from the stabilization window is chosen."

fn spec.behavior.scaleDown.withPolicies

withPolicies(policies)

"policies is a list of potential scaling polices which can be used during scaling. At least one policy must be specified, otherwise the HPAScalingRules will be discarded as invalid"

fn spec.behavior.scaleDown.withPoliciesMixin

withPoliciesMixin(policies)

"policies is a list of potential scaling polices which can be used during scaling. At least one policy must be specified, otherwise the HPAScalingRules will be discarded as invalid"

Note: This function appends passed data to existing values

fn spec.behavior.scaleDown.withSelectPolicy

withSelectPolicy(selectPolicy)

"selectPolicy is used to specify which policy should be used. If not set, the default value Max is used."

fn spec.behavior.scaleDown.withStabilizationWindowSeconds

withStabilizationWindowSeconds(stabilizationWindowSeconds)

"StabilizationWindowSeconds is the number of seconds for which past recommendations should be considered while scaling up or scaling down. StabilizationWindowSeconds must be greater than or equal to zero and less than or equal to 3600 (one hour). If not set, use the default values: - For scale up: 0 (i.e. no stabilization is done). - For scale down: 300 (i.e. the stabilization window is 300 seconds long)."

obj spec.behavior.scaleUp

"HPAScalingRules configures the scaling behavior for one direction. These Rules are applied after calculating DesiredReplicas from metrics for the HPA. They can limit the scaling velocity by specifying scaling policies. They can prevent flapping by specifying the stabilization window, so that the number of replicas is not set instantly, instead, the safest value from the stabilization window is chosen."

fn spec.behavior.scaleUp.withPolicies

withPolicies(policies)

"policies is a list of potential scaling polices which can be used during scaling. At least one policy must be specified, otherwise the HPAScalingRules will be discarded as invalid"

fn spec.behavior.scaleUp.withPoliciesMixin

withPoliciesMixin(policies)

"policies is a list of potential scaling polices which can be used during scaling. At least one policy must be specified, otherwise the HPAScalingRules will be discarded as invalid"

Note: This function appends passed data to existing values

fn spec.behavior.scaleUp.withSelectPolicy

withSelectPolicy(selectPolicy)

"selectPolicy is used to specify which policy should be used. If not set, the default value Max is used."

fn spec.behavior.scaleUp.withStabilizationWindowSeconds

withStabilizationWindowSeconds(stabilizationWindowSeconds)

"StabilizationWindowSeconds is the number of seconds for which past recommendations should be considered while scaling up or scaling down. StabilizationWindowSeconds must be greater than or equal to zero and less than or equal to 3600 (one hour). If not set, use the default values: - For scale up: 0 (i.e. no stabilization is done). - For scale down: 300 (i.e. the stabilization window is 300 seconds long)."

obj spec.scaleTargetRef

"CrossVersionObjectReference contains enough information to let you identify the referred resource."

fn spec.scaleTargetRef.withApiVersion

withApiVersion(apiVersion)

"API version of the referent"

fn spec.scaleTargetRef.withKind

withKind(kind)

"Kind of the referent; More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds"

fn spec.scaleTargetRef.withName

withName(name)

"Name of the referent; More info: http://kubernetes.io/docs/user-guide/identifiers#names"